
Slajd tytułowy bez zdjęcia. Można użyć również
jako slajd kończący z podziękowaniami.

Artemis: how CERT PL improves the
security of the Polish internet
Krzysztof Zając
69th TF-CSIRT Meeting
2023-05-24, Bucharest

Purpose

- Checking the security of websites and systems used by institutions in our
constituency:

- schools

- universities

- government institutions

- local government and public utility companies

- hospitals

- Improving the security of these systems by reporting the vulnerabilities

2

Legal basis
Act of National Cybersecurity System Legislation (NIS1 implementation) article 26 -
tasks of CSIRTs:

1. monitoring threats and incidents on a country level

2. providing information to entities in the national cybersecurity system

3. in justified cases: conducting vulnerability research of a device or software

4. developing tools to (...) detect and combat cybersecurity threats (...).

Article 32 allows us to do “any necessary technical actions” to analyze
cybersecurity threats

3

Legal basis
− We are the registrar for the .pl domain - we can put a clause that allows us to

scan in gov.pl rules.

− In some cases - agreements with other CSIRTs or institutions directly responsible
for a system.

− Backup: penal code article 269c.
The Polish Criminal Code penalises breaking into someone else’s IT systems, but has an explicit exception for
when it’s done for security purposes, without breaking anything and if the issue was immediately reported.

− NIS2 implementation - upcoming.

4

- Low amount of manual vulnerability
analysis: heuristics to filter true from false
positives

- Low load on scanned systems: per-host
rate limiting

- Reusing existing tools

Design goals

5

- Scalability

- Easy integration of a new tool

- Flexible scanning pipeline

- work with domains, HTTP
services, WordPress instances,
…

- Finds subdomains using open-source sources (crt.sh, Common

Crawl, Wayback Machine, …):

example.com → mail.example.com, old.example.com

- Detects DNS misconfigurations:

- Zone transfer,

- Subdomain takeover.

What Artemis does?

6

- Performs port scanning and service identification (is this a

website? a database?).

- Finds backups and other interesting files (e.g.

/wp-config.php.bak) using brute-force.

- Brute-forces weak passwords (FTP, PostgreSQL, MySQL i

WordPress).

What Artemis does?

7

Detects directory index:

What Artemis does?

8

What Artemis does?

9

Detects known vulnerabilities using Nuclei:
CVE-2023-28343, CVE-2023-23489, CVE-2023-23488, CVE-2022-47986, CVE-2022-47966, CVE-2022-47945, CVE-2022-47003,
CVE-2022-47002, CVE-2022-46169, CVE-2022-45933, CVE-2022-45917, CVE-2022-45805, CVE-2022-44877, CVE-2022-4447,
CVE-2022-43769, CVE-2022-42233, CVE-2022-41840, CVE-2022-4117, CVE-2022-40881, CVE-2022-40684, CVE-2022-4063, CVE-2022-4060,
CVE-2022-4050, CVE-2022-40083, CVE-2022-39952, CVE-2022-3982, CVE-2022-38637, CVE-2022-37042, CVE-2022-36642, CVE-2022-36446,
CVE-2022-35914, CVE-2022-35413, CVE-2022-35405, CVE-2022-34045, CVE-2022-33965, CVE-2022-32429, CVE-2022-32409,
CVE-2022-32094, CVE-2022-31814, CVE-2022-31656, CVE-2022-31499, CVE-2022-31126, CVE-2022-30525, CVE-2022-30512,
CVE-2022-29775, CVE-2022-29464, CVE-2022-29383, CVE-2022-29303, CVE-2022-29078, CVE-2022-29009, CVE-2022-29007,
CVE-2022-29006, CVE-2022-28219, CVE-2022-27927, CVE-2022-27593, CVE-2022-26960, CVE-2022-26833, CVE-2022-26352,
CVE-2022-26148, CVE-2022-26138, CVE-2022-26134, CVE-2022-25369, CVE-2022-25125, CVE-2022-25082, CVE-2022-2488, CVE-2022-2487,
CVE-2022-2486, CVE-2022-24816, CVE-2022-2467, CVE-2022-24260, CVE-2022-24112, CVE-2022-23944, CVE-2022-23898, CVE-2022-23881,
CVE-2022-23178, CVE-2022-2314, CVE-2022-23131, CVE-2022-22972, CVE-2022-22965, CVE-2022-22963, CVE-2022-22954,
CVE-2022-22947, CVE-2022-22536, CVE-2022-2185, CVE-2022-21587, CVE-2022-21500, CVE-2022-21371, CVE-2022-1952, CVE-2022-1609,
CVE-2022-1574, CVE-2022-1391, CVE-2022-1390, CVE-2022-1388, CVE-2022-1386, CVE-2022-1329, CVE-2022-1162, CVE-2022-1057,
CVE-2022-1040, CVE-2022-1020, CVE-2022-1013…

What Artemis does?

10

- Checks e-mail configuration (SPF, DMARC, open relay).

- Detects SQL Injection vulnerabilities.

- Detects accidentally published VCS repositories.

- Performs version check for WordPress, Joomla and WordPress plugins.

- Verifies SSL/TLS configuration.

Zasada działania

11

12

13

Raw results

1. The following addresses contain version control system data:

- https://███:443/.git/

Making a code repository public may allow an attacker to learn the inner workings of a system, and if it
contains passwords or API keys - also gain unautorized access. Such data shouldn't be publicly available.

2. The following addresses contain old Joomla versions:

- https://███:443 - Joomla 2.5.4

If a site is no longer used, we recommend shutting it down to eliminate the risk of exploitation of known
vulnerabilities in older Joomla versions. Otherwise, we recommend regular Joomla core and plugin updates.

3. The following domains don't have properly configured e-mail sender verification mechanisms:

- ███.pl: Valid SPF record not found
- ███.pl: Valid DMARC record not found

Such configuration may allow an attacker to send spoofed e-mail messages from these domains.

Example e-mail

14

Artemis is open-source
https://github.com/CERT-Polska/Artemis/

We invite you to use Artemis and add your own modules!

Not all modules are open-source yet - we are currently open-sourcing the

module to build e-mails.

15

https://github.com/CERT-Polska/Artemis/

How to write a new module

16

Let’s assume you want
to check whether the
URL contains the string
suspicious.

class CustomScanner(ArtemisBase):
 # Module name that will be displayed
 identity = "custom"

 # Types of tasks that will be consumed by the module - here,
 # open ports that were identified as containing a HTTP/HTTPS service.
 filters = [{"type": TaskType.SERVICE, "service": Service.HTTP}]

 def run(self, task: Task) -> None:
 # Will convert the identified service to the form of a URL,
 # e.g. http://domain.com:8001/
 url = get_target_url(task)

 if "suspicious" in url:
 status = TaskStatus.INTERESTING
 reason = "suspicious link detected!"
 else:
 status = TaskStatus.OK
 reason = None

 self.db.save_task_result(task=task, status=status,
status_reason=reason)

Modules can produce/consume various types of objects

17

Alternatives (1/2)

The data flow
uses text files →
hard to have a
robust data flow.

18

The purpose of
the system is
different, we
would need to
manage a fork.

Written in Bash,
therefore hard to
extend in a
robust way.

Osmedeus reNgine reconFTW

Do not do
reconnaissance.
Can be used as
part of the
pipeline if we
already know
the subdomains.

Alternatives (2/2)

19

Provides only a
subset of
information:
ports and
services on these
ports.

Even with script
support it would
be hard to
adapt to e.g.
enumerate
subdomains.

Nuclei /
Jaeles

Naabu /
fingerprintx nmap

Solves one
problem well:
port scanning.
Not able to build
pipelines out of
multiple types of
tools.

zmap /
masscan

Used in the
Artemis pipeline.

Scanning

We’ve been scanning the websites since January.

We have already scanned ~31k domains and IP addresses and

~85k subdomains.

20

~21.5k SSL/TLS misconfigurations

~14.1k SPF/DMARC misconfigurations

~9.2k obsolete Joomla, WordPress or WordPress plugin versions

~5.4k information leaks: AXFR, directory listing, phpinfo(), etc.

~1.5k high/critical vulnerabilities from Nuclei or sqlmap

697 exposed backups, source code, database dumps or logs

 75 exposed RDPs

Reported issues in 2023 so far (January-May)

21

~52.4k in total

Our current workflow:
1. a package of reports is prepared semi-automatically
2. 1st line sends e-mails to best-known contacts
3. 1st line manages the follow-up communication (when needed)

Responses are mostly positive, but:
− they sometimes include bug reports (which are frequently correct!)
− sometimes the institutions report false positives
− sometimes we need to fix the contacts
− sometimes we are ignored
− sometimes the institutions fix the vulnerabilities without responding

Reporting and reactions

22

- Distinguishing true from false positives
Example: if we detect that /wp-config.php.bak
is present, we need to check whether it is
indeed an exposed configuration file. We have
lots of heuristics to keep the number of false
positives low.

- Rate limiting in distributed environment
Making sure no server is overloaded with
requests is tricky with multiple modules.

- Scanning is slow
The biggest cause is the per-host limiting
behavior.

Challenges
- Deduplication

We need heuristics to detect whether two similar
vulnerabilities on institution.com and
www.institution.com are in fact one.

- Contact database
Maintaining an up-to-date contact database
requires significant effort.

- Running a non-trivial production service
We have a medium-scale service where we
sometimes need to troubleshoot unexpected
administrative problems.

- Prioritizing the scans

23

Conclusion for administrators

Yes, they seem obvious - but following them would greatly decrease the number

of problems found by Artemis.

24

Conclusion for administrators: updates

Detecting obsolete software versions with known bugs is easy.

Exploits for known vulnerabilities exist.

25

Conclusion for administrators: archived websites
Outside check allows to find archived or forgotten websites that can:

- use obsolete software (containing known vulnerabilities),

- be built without following of modern software engineering practices:

query("SELECT * FROM posts WHERE id = " . $_GET["id"])

Control what is exposed.

26

pybabel compile -i
translations_2023-05-22_13_16_04
.po -l pl_PL -d . -f

Conclusion for administrators: security by obscurity
Scanners can (and will) find:

− /backup.zip placed temporarily on the server,

− a test subdomain.

27

https://[domain]:443/.git

https://[domain]:443/uploads/

https://[domain]:443/config.inc
https://[domain]:443/config.php.save
https://[domain]:443/configuration.php.bak
https://[domain]:443/configuration.php.save
https://[domain]:443/wp-config.php~
https://[domain]:443/wp-config.php.bak
https://[domain]:443/wp-config.php.old
https://[domain]:443/wp-config.php.save

…

Conclusion for administrators: configuration files, logs,
backups, code repositories…

28

Conclusion for developers: Roundcube
misconfiguration - a case study

29

Conclusion for developers: Roundcube
misconfiguration

30

Conclusion for developers: Roundcube
misconfiguration

Why this is not a good approach? What conclusions can we draw?

31

- Unfortunately, there are still low-hanging vulnerabilities

- Many good offensive tools are available
even plain Nuclei or WordPress/Joomla version check would find many vulnerabilities

- Not a huge project: currently 1 FTE: development + operations
Managing contact list and sending prepared e-mails not included.

- Iterative development contributed to the project success
Instead of building the best scanner possible, we built a MVP with a subset of modules and ran
initial scans. During scans, we observed bugs, fixed them, but also added new modules.

Conclusion for CSIRTs

32

It is easy to start a similar
project and improve the
security of your constituency

33

Plans
- Develop the system:

- add modules to detect new vulnerabilities

- autoreporter - open source and make fully automatic

- Regularly scan multiple groups of domains (including most popular .pl domains)

34

Slajd tytułowy bez zdjęcia. Można użyć również
jako slajd kończący z podziękowaniami.

Questions?

https://github.com/
CERT-Polska/Artemis

https://github.com/CERT-Polska/Artemis
https://github.com/CERT-Polska/Artemis

