

Threat modeling in security operations

Jan Kopřiva jan.kopriva@nettles.cz

How do we usually handle security?

Risk assessment

- High-level identification of assets
- High-level identification of threats and vulnerabilities
- Risk assessment and specification of appropriate high-level security controls

A look into a crystal ball?

Implementation of specific controls

 Implementation of specific technical and organizational controls relevant to some aspects of identified high-level threats and risks

What does this mean for security operations?

- Risk assessment on the level of an entire organization requires that certain abstractions be made
- We usually lack technical detail when it comes to relevant threats and therefore can't reliably detect them
- Choice of appropriate detections and analytics (correlation rules, etc.) usually is/has to be based on "expert judgement"

This is a problem...

"If you know the enemy and know yourself, you need not fear the result of a hundred battles.

If you know yourself but not the enemy, for every victory gained you will also suffer a defeat.

If you know neither the enemy nor yourself, you will succumb in every battle."

Analogous situations come up in other areas as well

- OWASP Top 10 as the only basis for security web applications
 - From an objective standpoint, all risks all probably relevant
 - Specific controls to mitigate the risks are not necessarily obvious
 - A04:2021 Insecure design
 - A09:2021 Security Logging and Monitoring Failures
- But... OWASP Top 10 is usually not the only basis for web application security
 - "Secure" SDLs (e.g., with the use of ASVS) always include some threat modeling and attack surface management aspects

Threat modeling

"A process by which potential threats, such as structural vulnerabilities or the absence of appropriate safeguards, can be identified, enumerated, and mitigations can be prioritized."

Wikipedia

Generic approach to threat modeling

- Scope determination and creating an abstraction/decomposition of the protected system
- 2. Identification of factors that may affect individual components of the system or their interactions in an unfavorable manner
- 3. Modeling of individual scenarios related to identified factors
- 4. Identification of controls that eliminate threats, mitigate their impact or enable their detection

Most common "open" methodologies for threat modeling

- STRIDE (+DREAD)
- IDDIL/ATC
- PASTA
- Attack trees
- LINDDUN
- OCTAVE
- NIST SP 800-154

Threat modeling for arbitrary system

- Open Source Security Testing Methodology Manual (OSSTMM) in version 3 is not (just) a methodology for penetration testing
- Analysis of "porosity" of a system may serve as a threat modeling approach

Category		OpSec	Limitations
Operations		Visibility	Exposure
		Access	Vulnerability
		Trust	
Controls	Class A - Interactive	Authentication	Weakness
		Indemnification	
		Resilience	
		Subjugation	
		Continuity	
	Class B - Process	Non-Repudiation	Concern
		Confidentiality	
		Privacy	
		Integrity	
		Alarm	
			Anomalies

Zdroj: OSSTMMv3

Organization-wide "technical" threat model (not just) for security operations?

- In general, this is somewhat of a problematic concept, since we don't necessarily have full knowledge of relevant threats
 - OSSTMM may help to overcome this issue, however, it is not "user-friendly" when it comes to threat modeling in highly complex "system of systems" environments
- Although it is not primarily intended for threat modeling, we've had a a tool, which describes threats on a suitable level of abstraction for a while now...

MITRE ATT&CK

MITRE ATT&CK Enterprise

	F	10 techniques	Resource Development 7 techniques		
nitial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access
9 techniques	12 techniques	19 techniques	13 techniques	42 techniques	16 techniques
Discovery	Lateral Movement	Collection	Command and Control	Exfiltration	Impact
30 techniques	9 techniques	17 techniques	16 techniques	9 techniques	13 techniques

MITRE ATT&CK Enterprise – Details of (sub)techniques

MITRE ATT&CK as a tool for threat modeling

- We can model threats to our environment quite easily, if we know:
 - Which platforms are relevant for us
 - What groups and tools are relevant for us
 - What (sub)techniques do these tools and groups use

MITRE ATT&CK as a tool for threat modeling

- 1. Identification of relevant platforms is trivial for most security teams
- 2. Identification of relevant groups and tools is more complicated, but not by much
 - If we have CTI mechanisms in place, we already know what's relevant for us
 - Even a quick analysis based only on which threat actor groups target similar organizations based on geography and "market vertical" can provide highly valuable input
 - Mapping of dominant (sub)techniques on different threat actor groups is already available
- 3. After identification of relevant (sub)techniques, it is necessary to prioritize them

MITRE ATT&CK as a tool for threat modeling

- 4. Mapping of already implemented controls and capabilities should follow
 - It is advisable to map "detection" and "reaction" capabilities individually
 - Making some indication of coverage of individual (sub)techniques can be beneficial
- 5. The final step is identification of controls to cover previously uncovered/weakly covered (sub)techniques

MITRE ATT&CK Navigator – mapping of threats and controls

- Details at https://github.com/mitre-attack/attack-navigator
- Demo at https://mitre-attack.github.io/attack-navigator/

DeTT&ct Editor – data source mapping

- Details at https://github.com/rabobank-cdc/DeTTECT
- Demo at https://rabobank-cdc.github.io/dettect-editor/

Main takeaways

- Basic threat modeling approach can be quite straightforward
 - 1. Identify relevant platforms
 - 2. Identify relevant threat actor groups and tools
 - 3. Identify relevant (sub)techniques
 - 4. Map (sub)techniques to MITRE ATT&CK using ATT&CK Navigator
 - 5. Prioritize relevant (sub)techniques
 - 6. Map existing controls to the resulting threat model
 - Identify controls for prevention and/or detection which will cover currently "uncovered" (sub)techniques

What will this result in?

Risk assessment

- High-level identification of assets
- High-level identification of threats and vulnerabilities
- Risk assessment and specification of appropriate high-level security controls

"Technical" threat modeling

- Identification of corresponding threats on a lower level of abstraction
- Identification of specific requirements for security controls and analytics

Implementation of specific controls

 Implementation of specific technical and organizational controls relevant to some aspects of identified high-level threats and risks

Few thoughts to end on...

"Anyone can invent a security system that he himself cannot break."

- Bruce Schneier

True, but that doesn't mean we shouldn't try to invent the best system possible.

Additional materials

http://csirt.xyz/#threat_modeling

Q&A

Thank you for your attention!

